Finite-Dimensional Division Algebras over Fields

· Springer Science & Business Media
E-kitap
284
Sayfa
Puanlar ve yorumlar doğrulanmaz Daha Fazla Bilgi

Bu e-kitap hakkında

These algebras determine, by the Sliedderburn Theorem. the semi-simple finite dimensional algebras over a field. They lead to the definition of the Brauer group and to certain geometric objects, the Brauer-Severi varieties. Sie shall be interested in these algebras which have an involution. Algebras with involution arose first in the study of the so-called .'multiplication algebras of Riemann matrices". Albert undertook their study at the behest of Lefschetz. He solved the problem of determining these algebras. The problem has an algebraic part and an arithmetic part which can be solved only by determining the finite dimensional simple algebras over an algebraic number field. We are not going to consider the arithmetic part but will be interested only in the algebraic part. In Albert's classical book (1939). both parts are treated. A quick survey of our Table of Contents will indicate the scope of the present volume. The largest part of our book is the fifth chapter which deals with invo- torial rimple algebras of finite dimension over a field. Of particular interest are the Jordan algebras determined by these algebras with involution. Their structure is determined and two important concepts of these algebras with involution are the universal enveloping algebras and the reduced norm. Of great importance is the concept of isotopy. There are numerous applications of these concepts, some of which are quite old.

Bu e-kitaba puan verin

Düşüncelerinizi bizimle paylaşın.

Okuma bilgileri

Akıllı telefonlar ve tabletler
Android ve iPad/iPhone için Google Play Kitaplar uygulamasını yükleyin. Bu uygulama, hesabınızla otomatik olarak senkronize olur ve nerede olursanız olun çevrimiçi veya çevrimdışı olarak okumanıza olanak sağlar.
Dizüstü bilgisayarlar ve masaüstü bilgisayarlar
Bilgisayarınızın web tarayıcısını kullanarak Google Play'de satın alınan sesli kitapları dinleyebilirsiniz.
e-Okuyucular ve diğer cihazlar
Kobo eReader gibi e-mürekkep cihazlarında okumak için dosyayı indirip cihazınıza aktarmanız gerekir. Dosyaları desteklenen e-kitap okuyuculara aktarmak için lütfen ayrıntılı Yardım Merkezi talimatlarını uygulayın.