Finite-Dimensional Division Algebras over Fields

· Springer Science & Business Media
E-kitab
284
Səhifələr
Reytinqlər və rəylər doğrulanmır  Ətraflı Məlumat

Bu e-kitab haqqında

These algebras determine, by the Sliedderburn Theorem. the semi-simple finite dimensional algebras over a field. They lead to the definition of the Brauer group and to certain geometric objects, the Brauer-Severi varieties. Sie shall be interested in these algebras which have an involution. Algebras with involution arose first in the study of the so-called .'multiplication algebras of Riemann matrices". Albert undertook their study at the behest of Lefschetz. He solved the problem of determining these algebras. The problem has an algebraic part and an arithmetic part which can be solved only by determining the finite dimensional simple algebras over an algebraic number field. We are not going to consider the arithmetic part but will be interested only in the algebraic part. In Albert's classical book (1939). both parts are treated. A quick survey of our Table of Contents will indicate the scope of the present volume. The largest part of our book is the fifth chapter which deals with invo- torial rimple algebras of finite dimension over a field. Of particular interest are the Jordan algebras determined by these algebras with involution. Their structure is determined and two important concepts of these algebras with involution are the universal enveloping algebras and the reduced norm. Of great importance is the concept of isotopy. There are numerous applications of these concepts, some of which are quite old.

Bu e-kitabı qiymətləndirin

Fikirlərinizi bizə deyin

Məlumat oxunur

Smartfonlar və planşetlər
AndroidiPad/iPhone üçün Google Play Kitablar tətbiqini quraşdırın. Bu hesabınızla avtomatik sinxronlaşır və harada olmağınızdan asılı olmayaraq onlayn və oflayn rejimdə oxumanıza imkan yaradır.
Noutbuklar və kompüterlər
Kompüterinizin veb brauzerini istifadə etməklə Google Play'də alınmış audio kitabları dinləyə bilərsiniz.
eReader'lər və digər cihazlar
Kobo eReaders kimi e-mürəkkəb cihazlarında oxumaq üçün faylı endirməli və onu cihazınıza köçürməlisiniz. Faylları dəstəklənən eReader'lərə köçürmək üçün ətraflı Yardım Mərkəzi təlimatlarını izləyin.