Non-Commutative Spectral Theory for Affine Function Spaces on Convex Sets

·
· American Mathematical Society: Memoirs of the American Mathematical Society Book 172 · American Mathematical Soc.
Ebook
120
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

In this paper we develop geometric notions related to self-adjoint projections and one-sided ideals in operator algebras. In the context of affine function spaces on convex sets we define projective units. P-projections, and projective faces which generalize respectively self-adjoint projections p, the maps a [right arrow] pap, and closed faces of state spaces of operator algebras. In terms of these concepts we state a "spectral axiom" requiring the existence of "sufficiently many" projective objects. We then prove the spectral theorem: that elements of the affine function space admit a unique spectral decomposition. This in turn yields a satisfactory functional calculus, which is unique under a natural minimality requirement (that it be "extreme point preserving").

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.