Engineering Materials for 3D Printing

¡ ¡ ¡
¡ Elsevier
āĻ‡-āĻŦā§āĻ•
300
āĻĒā§ƒāĻˇā§āĻ āĻž
āĻ‰āĻĒāĻ¯ā§āĻ•ā§āĻ¤
āĻāĻ‡ āĻŦāĻ‡āĻŸāĻŋ ā§§ āĻœāĻžāĻ¨ā§āĻ¯āĻŧāĻžāĻ°ā§€, ā§¨ā§Ļā§¨ā§Ŧ āĻ āĻĒāĻžāĻ“ā§ŸāĻž āĻ¯āĻžāĻŦā§‡āĨ¤ āĻāĻŸāĻŋ āĻ°āĻŋāĻ˛āĻŋāĻœ āĻ¨āĻž āĻšāĻ“āĻ¯āĻŧāĻž āĻĒāĻ°ā§āĻ¯āĻ¨ā§āĻ¤ āĻ†āĻĒāĻ¨āĻžāĻ•ā§‡ āĻšāĻžāĻ°ā§āĻœ āĻ•āĻ°āĻž āĻšāĻŦā§‡ āĻ¨āĻžāĨ¤

āĻāĻ‡ āĻ‡-āĻŦā§āĻ•ā§‡āĻ° āĻŦāĻŋāĻˇā§Ÿā§‡

3D printing processes have promising advantages over conventional manufacturing processes from a functional ability viewpoint. In the past 30 years, a variety of additive manufacturing-based 3D printing processes have been reported for the fabrication of functional prototypes, using materials such as thermoplastic, resins, metal and their alloys. While there is a significant amount of information on various 3D printing processes, and materials that may be used in 3D printing-based manufacturing practices for engineering applications, there is far less information on: 3D printable materials for structural and non-structural engineering applications. "3D Printable Materials for Structural and Non-structural Engineering Applications" fills this gap. The book includes three sections and provides an insight on the development and characterization of polymer-based 3D printed materials by different processes such as extrusion, sol-gel, and pulverization along with meta-structure properties for various structural applicationsâ€ĸ The theoretical foundation of the book helps readers to understand the fundamentals of the process, material development and basic required characteristics of 3D printable materials; in addition, it covers the theory behind the development of smart 3D printed products for structural and non-structural engineering applicationsâ€ĸ The theoretical information in the book is supported with details of R&D on product developmentâ€ĸ The practical implications of 3D printing are integrated in the book with real-world case studies in order to promote a better understanding of case studiesâ€ĸ The content of the book is organized in such a manner that it is helpful for multiple research disciplines: such as engineering, structural, non-structural engineering, biomedical, waste management, etc

āĻ˛ā§‡āĻ–āĻ• āĻ¸āĻŽā§āĻĒāĻ°ā§āĻ•ā§‡

Dr. Rupinder Singh is currently Professor and Head of the Department of Mechanical Engineering, National Institute of Technical Teacher Training and Research, Chandigarh. He received a Ph.D. in Mechanical Engineering from the Thapar Institute of Engineering and Technology Patiala. His research interests are additive manufacturing, composite filament processing, rapid tooling, metal casting and plastic solid waste managementDr Vinay Kumar is an Assistant Professor at the University Centre for Research and Development, Chandigarh University. He has received Ph.D. in Mechanical Engineering from Punjabi University, Patiala. His area of research is additive manufacturing and the application of 3D printing for the development of new customizable solutions for structural and non-structural defects in heritage structures, and biomaterials for clinical applications. He has contributed extensively to additive manufacturing literature with publications appearing in Composite Part: B, Materials Letters, Journal of Manufacturing Processes, Journal of Thermoplastic composite Materials, Journal of Composite Materials, Journal of Materials Engineering and Performance, Sadhana, Materials Research Express, Advances in Materials Processing Technology, Proceedings of Institute of Mechanical Engineers Part-B, Part E, Part H, Part L, etc. He has authored 30 research papers and 25 book chaptersDr Nishant Ranjan is an Assistant Professor at the University Centre for Research and Development of Chandigarh University, India. His research interests include: materials development for biomedical-based 3D printing applications, materials processing of thermoplastic polymers, reinforcement and the development of new composite thermoplastic polymers, and scaffold printingDr. Ranvijay Kumar is an Assistant Professor at University Centre for Research and Development, Chandigarh University. He received a Ph.D. in Mechanical Engineering from Punjabi University, Patiala. His research interests include: additive manufacturing, shape memory polymers, smart materials, friction-based welding techniques, advanced materials processing, polymer matrix composite preparations, reinforced polymer composites for 3D printing, plastic solid waste management, thermosetting recycling, and destructive testing of materials

āĻĒāĻ āĻ¨ āĻ¤āĻĨā§āĻ¯

āĻ¸ā§āĻŽāĻžāĻ°ā§āĻŸāĻĢā§‹āĻ¨ āĻāĻŦāĻ‚ āĻŸā§āĻ¯āĻžāĻŦāĻ˛ā§‡āĻŸ
Android āĻāĻŦāĻ‚ iPad/iPhone āĻāĻ° āĻœāĻ¨ā§āĻ¯ Google Play āĻŦāĻ‡ āĻ…ā§āĻ¯āĻžāĻĒ āĻ‡āĻ¨āĻ¸ā§āĻŸāĻ˛ āĻ•āĻ°ā§āĻ¨āĨ¤ āĻāĻŸāĻŋ āĻ†āĻĒāĻ¨āĻžāĻ° āĻ…ā§āĻ¯āĻžāĻ•āĻžāĻ‰āĻ¨ā§āĻŸā§‡āĻ° āĻ¸āĻžāĻĨā§‡ āĻ…āĻŸā§‹āĻŽā§‡āĻŸāĻŋāĻ• āĻ¸āĻŋāĻ™ā§āĻ• āĻšā§Ÿ āĻ“ āĻ†āĻĒāĻ¨āĻŋ āĻ…āĻ¨āĻ˛āĻžāĻ‡āĻ¨ āĻŦāĻž āĻ…āĻĢāĻ˛āĻžāĻ‡āĻ¨ āĻ¯āĻžāĻ‡ āĻĨāĻžāĻ•ā§āĻ¨ āĻ¨āĻž āĻ•ā§‡āĻ¨ āĻ†āĻĒāĻ¨āĻžāĻ•ā§‡ āĻĒā§œāĻ¤ā§‡ āĻĻā§‡ā§ŸāĨ¤
āĻ˛ā§āĻ¯āĻžāĻĒāĻŸāĻĒ āĻ“ āĻ•āĻŽā§āĻĒāĻŋāĻ‰āĻŸāĻžāĻ°
Google Play āĻĨā§‡āĻ•ā§‡ āĻ•ā§‡āĻ¨āĻž āĻ…āĻĄāĻŋāĻ“āĻŦā§āĻ• āĻ†āĻĒāĻ¨āĻŋ āĻ•āĻŽā§āĻĒāĻŋāĻ‰āĻŸāĻžāĻ°ā§‡āĻ° āĻ“ā§Ÿā§‡āĻŦ āĻŦā§āĻ°āĻžāĻ‰āĻœāĻžāĻ°ā§‡ āĻļā§āĻ¨āĻ¤ā§‡ āĻĒāĻžāĻ°ā§‡āĻ¨āĨ¤
eReader āĻāĻŦāĻ‚ āĻ…āĻ¨ā§āĻ¯āĻžāĻ¨ā§āĻ¯ āĻĄāĻŋāĻ­āĻžāĻ‡āĻ¸
Kobo eReaders-āĻāĻ° āĻŽāĻ¤ā§‹ e-ink āĻĄāĻŋāĻ­āĻžāĻ‡āĻ¸ā§‡ āĻĒāĻĄāĻŧāĻ¤ā§‡, āĻ†āĻĒāĻ¨āĻžāĻ•ā§‡ āĻāĻ•āĻŸāĻŋ āĻĢāĻžāĻ‡āĻ˛ āĻĄāĻžāĻ‰āĻ¨āĻ˛ā§‹āĻĄ āĻ“ āĻ†āĻĒāĻ¨āĻžāĻ° āĻĄāĻŋāĻ­āĻžāĻ‡āĻ¸ā§‡ āĻŸā§āĻ°āĻžāĻ¨ā§āĻ¸āĻĢāĻžāĻ° āĻ•āĻ°āĻ¤ā§‡ āĻšāĻŦā§‡āĨ¤ āĻŦā§āĻ¯āĻŦāĻšāĻžāĻ°āĻ•āĻžāĻ°ā§€āĻ° āĻ‰āĻĻā§āĻĻā§‡āĻļā§āĻ¯ā§‡ āĻ¤ā§ˆāĻ°āĻŋ āĻ¸āĻšāĻžā§ŸāĻ¤āĻž āĻ•ā§‡āĻ¨ā§āĻĻā§āĻ°āĻ¤ā§‡ āĻĻā§‡āĻ“ā§ŸāĻž āĻ¨āĻŋāĻ°ā§āĻĻā§‡āĻļāĻžāĻŦāĻ˛ā§€ āĻ…āĻ¨ā§āĻ¸āĻ°āĻŖ āĻ•āĻ°ā§‡ āĻ¯ā§‡āĻ¸āĻŦ eReader-āĻ āĻĢāĻžāĻ‡āĻ˛ āĻĒāĻĄāĻŧāĻž āĻ¯āĻžāĻŦā§‡ āĻ¸ā§‡āĻ–āĻžāĻ¨ā§‡ āĻŸā§āĻ°āĻžāĻ¨ā§āĻ¸āĻĢāĻžāĻ° āĻ•āĻ°ā§āĻ¨āĨ¤