Dimensionality Reduction: Advancements in data processing for intelligent systems

· Robotics Science Część 26 · One Billion Knowledgeable
E-book
354
Strony
Odpowiednia
Oceny i opinie nie są weryfikowane. Więcej informacji

Informacje o e-booku

1: Dimensionality reduction: Introduces the concept and need for reducing the complexity of highdimensional data in robotics.

2: Principal component analysis: Discusses PCA as a key linear technique for feature extraction and data compression.


3: Nonlinear dimensionality reduction: Explores nonlinear techniques for capturing complex data structures in robotics.


4: Eigenface: Covers the use of eigenfaces for facial recognition in robotics, demonstrating a realworld application of dimensionality reduction.


5: Empirical orthogonal functions: Describes a method for representing data in a way that captures important features for robotic systems.


6: Semidefinite embedding: Introduces this technique to preserve data relationships while reducing dimensionality, improving robotic data processing.


7: Linear discriminant analysis: Explains how LDA helps in classification tasks by focusing on class separability in reduced data.


8: Nonnegative matrix factorization: Describes how NMF helps in extracting partsbased representations from data, particularly for robotics.


9: Kernel principal component analysis: Expands on PCA with kernel methods to handle nonlinear data, crucial for robotics systems working with complex inputs.


10: Shogun (toolbox): Highlights the Shogun machine learning toolbox, which includes dimensionality reduction methods for robotic applications.


11: Spectral clustering: Covers this technique for clustering highdimensional data, an essential task in robotic perception and understanding.


12: Isomap: Discusses Isomap, a method for nonlinear dimensionality reduction, and its impact on improving robotic models.


13: Principal component regression: Links PCA with regression to reduce data dimensionality and improve predictive models in robotics.


14: Multilinear subspace learning: Introduces this advanced method for handling multidimensional data, boosting robot performance.


15: Mlpy: Details the Mlpy machine learning library, showcasing tools for dimensionality reduction in robotic systems.


16: Diffusion map: Focuses on the diffusion map technique for dimensionality reduction and its application to robotics.


17: Feature learning: Explores the concept of feature learning and its significance in enhancing robotic systems’ data interpretation.


18: Kernel adaptive filter: Discusses this filtering technique for adapting models to dynamic data, improving realtime robotic decisionmaking.


19: Random projection: Offers insights into how random projection techniques can speed up dimensionality reduction for large data sets in robotics.


20: Feature engineering: Introduces the process of designing features that help robots understand and interact with their environments more effectively.


21: Multivariate normal distribution: Concludes with an exploration of this statistical tool used in robotics for handling uncertainty and data modeling.

Oceń tego e-booka

Podziel się z nami swoją opinią.

Informacje o czytaniu

Smartfony i tablety
Zainstaluj aplikację Książki Google Play na AndroidaiPada/iPhone'a. Synchronizuje się ona automatycznie z kontem i pozwala na czytanie w dowolnym miejscu, w trybie online i offline.
Laptopy i komputery
Audiobooków kupionych w Google Play możesz słuchać w przeglądarce internetowej na komputerze.
Czytniki e-booków i inne urządzenia
Aby czytać na e-papierze, na czytnikach takich jak Kobo, musisz pobrać plik i przesłać go na swoje urządzenie. Aby przesłać pliki na obsługiwany czytnik, postępuj zgodnie ze szczegółowymi instrukcjami z Centrum pomocy.

Kontynuuj serię

Więcej tytułów autora: Fouad Sabry

Podobne e-booki