Differentialgleichungen und Mathematische Modellbildung: Eine praxisnahe Einführung unter Berücksichtigung der Symmetrie-Analyse

·
· Walter de Gruyter GmbH & Co KG
Ebook
378
Pages
Les notes et les avis ne sont pas vérifiés  En savoir plus

À propos de cet ebook

Dieses Lehrbuch führt in das Gebiet der Differentialgleichungen und der mathematischen Modellbildung ein. Dabei werden etablierte und moderne Rechenmethoden besprochen und es wird erläutert, wie diese zur mathematischen Modellierung benutzt werden können. Lie-Gruppen und deren Einsatz zur Lösung von Differentialgleichungen spielen dabei eine tragende Rolle. Es werden gewöhnliche und partielle Differentialgleichungen verschiedener Ordnung behandelt, aus denen individuell Beispiele ausgewählt werden können. In seinem modularen und einfach zu folgenden Aufbau ist dieses Buch ideal für Studenten und Wissenschaftler, die mit mathematischen Modellen umgehen müssen.

Inhalt
Ausgewählte Kapitel der Analysis
Mathematische Modelle
Gewöhnliche Differentialgleichungen, traditionelle Lösungsmethoden
Partielle Differentialgleichungen erster Ordnung
Lineare partielle Differentialgleichungen zweiter Ordnung
Nichtlineare gewöhnliche Differentialgleichungen
Nichtlineare Partielle Differentialgleichungen
Verallgemeinerte Funktionen oder Distributionen
Invarianzprinzip und Fundamentallösung

Quelques mots sur l'auteur

Nail H. Ibragimov, Blekinge Institute of Technology, Schweden;
Jörg Volkmann, Deutschland.

Attribuez une note à ce ebook

Faites-nous part de votre avis.

Informations sur la lecture

Téléphones intelligents et tablettes
Installez l'appli Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play en utilisant le navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour pouvoir lire des ouvrages sur des appareils utilisant la technologie e-Ink, comme les liseuses électroniques Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du centre d'aide pour transférer les fichiers sur les liseuses électroniques compatibles.