Differential Dynamical Systems

· Mathematical Modeling and Computation 14. knjiga · SIAM
E-knjiga
409
Strani
Primerno
Ocene in mnenja niso preverjeni. Več o tem

O tej e-knjigi

Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines traditional teaching on ordinary differential equations with an introduction to the more modern theory of dynamical systems, placing this theory in the context of applications to physics, biology, chemistry, and engineering. Beginning with linear systems, including matrix algebra, the focus then shifts to foundational material on non-linear differential equations, drawing heavily on the contraction mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts - flow, chaos, invariant manifolds, bifurcation, etc. An appendix provides simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems. For senior undergraduates and first-year graduate students in pure and applied mathematics, engineering, and the physical sciences. Readers should be comfortable with differential equations and linear algebra and have had some exposure to advanced calculus.

O avtorju

James D. Meiss is a Professor in the Department of Applied Mathematics at the University of Colorado at Boulder. He is a fellow of the American Physical Society. His work in dynamical systems focuses on Hamiltonian dynamics, the transition to chaos, and the theory of transport.

Ocenite to e-knjigo

Povejte nam svoje mnenje.

Informacije o branju

Pametni telefoni in tablični računalniki
Namestite aplikacijo Knjige Google Play za Android in iPad/iPhone. Samodejno se sinhronizira z računom in kjer koli omogoča branje s povezavo ali brez nje.
Prenosni in namizni računalniki
Poslušate lahko zvočne knjige, ki ste jih kupili v Googlu Play v brskalniku računalnika.
Bralniki e-knjig in druge naprave
Če želite brati v napravah, ki imajo zaslone z e-črnilom, kot so e-bralniki Kobo, morate prenesti datoteko in jo kopirati v napravo. Podrobna navodila za prenos datotek v podprte bralnike e-knjig najdete v centru za pomoč.