Differentiable Periodic Maps: Reihe: Moderne Topologie

·
· Springer Science & Business Media
E-bog
148
Sider
Bedømmelser og anmeldelser verificeres ikke  Få flere oplysninger

Om denne e-bog

This research tract contains an exposition of our research on bordism and differentiable periodic maps done in the period 1960-62. The research grew out of the conviction, not ours alone, that the subject of transformation groups is in need of a large infusion of the modern methods of algebraic topology. This conviction we owe at least in part to Armand Borel; in particular Borel has maintained the desirability of methods in transformation groups that use differentiability in a key fashion [9, Introduction], and that is what we try to supply here. We do not try to relate our work to Smith theory, the homological study of periodic maps due to such a large extent to P. A. Smith; for a modern development of that subject which expands it greatly see the Borel Seminar notes [9]. It appears to us that our work is independent of Smith theory, but in part inspired by it. We owe a particular debt to G. D. Mostow, who pointed out to us some time ago that it followed from Smith theory that an involution on a compact manifold, or a map of prime period [italic lowercase]p on a compact orientable manifold, could not have precisely one fixed point. It was this fact that led us to believe it worthwhile to apply cobordism to periodic maps.

Bedøm denne e-bog

Fortæl os, hvad du mener.

Oplysninger om læsning

Smartphones og tablets
Installer appen Google Play Bøger til Android og iPad/iPhone. Den synkroniserer automatisk med din konto og giver dig mulighed for at læse online eller offline, uanset hvor du er.
Bærbare og stationære computere
Du kan høre lydbøger, du har købt i Google Play via browseren på din computer.
e-læsere og andre enheder
Hvis du vil læse på e-ink-enheder som f.eks. Kobo-e-læsere, skal du downloade en fil og overføre den til din enhed. Følg den detaljerede vejledning i Hjælp for at overføre filerne til understøttede e-læsere.