Cyclotomic Fields II

· Graduate Texts in Mathematics 69 knyga · Springer Science & Business Media
El. knyga
164
Puslapiai
Įvertinimai ir apžvalgos nepatvirtinti. Sužinokite daugiau

Apie šią el. knygą

This second volume incorporates a number of results which were discovered and/or systematized since the first volume was being written. Again, I limit myself to the cyclotomic fields proper without introducing modular func tions. As in the first volume, the main concern is with class number formulas, Gauss sums, and the like. We begin with the Ferrero-Washington theorems, proving Iwasawa's conjecture that the p-primary part of the ideal class group in the cyclotomic Zp-extension of a cyclotomic field grows linearly rather than exponentially. This is first done for the minus part (the minus referring, as usual, to the eigenspace for complex conjugation), and then it follows for the plus part because of results bounding the plus part in terms of the minus part. Kummer had already proved such results (e.g. if p, (h; then p, (h;). These are now formulated in ways applicable to the Iwasawa invariants, following Iwasawa himself. After that we do what amounts to " Dwork theory," to derive the Gross Koblitz formula expressing Gauss sums in terms of the p-adic gamma function. This lifts Stickel berger's theorem p-adically. Half of the proof relies on a course of Katz, who had first obtained Gauss sums as limits of certain factorials, and thought of using Washnitzer-Monsky cohomology to prove the Gross-Koblitz formula

Įvertinti šią el. knygą

Pasidalykite savo nuomone.

Skaitymo informacija

Išmanieji telefonai ir planšetiniai kompiuteriai
Įdiekite „Google Play“ knygų programą, skirtą „Android“ ir „iPad“ / „iPhone“. Ji automatiškai susinchronizuojama su paskyra ir jūs galite skaityti tiek prisijungę, tiek neprisijungę, kad ir kur būtumėte.
Nešiojamieji ir staliniai kompiuteriai
Galite klausyti garsinių knygų, įsigytų sistemoje „Google Play“ naudojant kompiuterio žiniatinklio naršyklę.
El. knygų skaitytuvai ir kiti įrenginiai
Jei norite skaityti el. skaitytuvuose, pvz., „Kobo eReader“, turite atsisiųsti failą ir perkelti jį į įrenginį. Kad perkeltumėte failus į palaikomus el. skaitytuvus, vadovaukitės išsamiomis pagalbos centro instrukcijomis.