Complex Multiplication and Lifting Problems

· ·
· Mathematical Surveys and Monographs 195. grāmata · American Mathematical Soc.
E-grāmata
387
Lappuses
Atsauksmes un vērtējumi nav pārbaudīti. Uzzināt vairāk

Par šo e-grāmatu

Abelian varieties with complex multiplication
lie at the origins of class field theory, and they play a central role
in the contemporary theory of Shimura varieties. They are special in
characteristic 0 and ubiquitous over finite fields. This book explores
the relationship between such abelian varieties over finite fields and
over arithmetically interesting fields of characteristic 0 via the
study of several natural CM lifting problems which had
previously been solved only in special cases. In addition to giving
complete solutions to such questions, the authors provide numerous
examples to illustrate the general theory and present a detailed
treatment of many fundamental results and concepts in the arithmetic of
abelian varieties, such as the Main Theorem of Complex Multiplication
and its generalizations, the finer aspects of Tate's work on abelian
varieties over finite fields, and deformation theory.

This book
provides an ideal illustration of how modern techniques in arithmetic
geometry (such as descent theory, crystalline methods, and group
schemes) can be fruitfully combined with class field theory to answer
concrete questions about abelian varieties. It will be a useful
reference for researchers and advanced graduate students at the
interface of number theory and algebraic geometry.

Novērtējiet šo e-grāmatu

Izsakiet savu viedokli!

Informācija lasīšanai

Viedtālruņi un planšetdatori
Instalējiet lietotni Google Play grāmatas Android ierīcēm un iPad planšetdatoriem/iPhone tālruņiem. Lietotne tiks automātiski sinhronizēta ar jūsu kontu un ļaus lasīt saturu tiešsaistē vai bezsaistē neatkarīgi no jūsu atrašanās vietas.
Klēpjdatori un galddatori
Varat klausīties pakalpojumā Google Play iegādātās audiogrāmatas, izmantojot datora tīmekļa pārlūkprogrammu.
E-lasītāji un citas ierīces
Lai lasītu grāmatas tādās elektroniskās tintes ierīcēs kā Kobo e-lasītāji, nepieciešams lejupielādēt failu un pārsūtīt to uz savu ierīci. Izpildiet palīdzības centrā sniegtos detalizētos norādījumus, lai pārsūtītu failus uz atbalstītiem e-lasītājiem.