Complex Multiplication and Lifting Problems

· ·
· Mathematical Surveys and Monographs 195-кітап · American Mathematical Soc.
Электрондық кітап
387
бет
Рейтингілер мен пікірлер тексерілмеген. Толығырақ

Осы электрондық кітап туралы ақпарат

Abelian varieties with complex multiplication
lie at the origins of class field theory, and they play a central role
in the contemporary theory of Shimura varieties. They are special in
characteristic 0 and ubiquitous over finite fields. This book explores
the relationship between such abelian varieties over finite fields and
over arithmetically interesting fields of characteristic 0 via the
study of several natural CM lifting problems which had
previously been solved only in special cases. In addition to giving
complete solutions to such questions, the authors provide numerous
examples to illustrate the general theory and present a detailed
treatment of many fundamental results and concepts in the arithmetic of
abelian varieties, such as the Main Theorem of Complex Multiplication
and its generalizations, the finer aspects of Tate's work on abelian
varieties over finite fields, and deformation theory.

This book
provides an ideal illustration of how modern techniques in arithmetic
geometry (such as descent theory, crystalline methods, and group
schemes) can be fruitfully combined with class field theory to answer
concrete questions about abelian varieties. It will be a useful
reference for researchers and advanced graduate students at the
interface of number theory and algebraic geometry.

Осы электрондық кітапты бағалаңыз.

Пікіріңізбен бөлісіңіз.

Ақпаратты оқу

Смартфондар мен планшеттер
Android және iPad/iPhone үшін Google Play Books қолданбасын орнатыңыз. Ол аккаунтпен автоматты түрде синхрондалады және қайда болсаңыз да, онлайн не офлайн режимде оқуға мүмкіндік береді.
Ноутбуктар мен компьютерлер
Google Play дүкенінде сатып алған аудиокітаптарды компьютердің браузерінде тыңдауыңызға болады.
eReader және басқа құрылғылар
Kobo eReader сияқты E-ink технологиясымен жұмыс істейтін құрылғылардан оқу үшін файлды жүктеп, оны құрылғыға жіберу керек. Қолдау көрсетілетін eReader құрылғысына файл жіберу үшін Анықтама орталығының нұсқауларын орындаңыз.