Braids and Self-Distributivity

· Progress in Mathematics 192권 · Birkhäuser
eBook
623
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

The aim of this book is to present recently discovered connections between Artin's braid groups En and left self-distributive systems (also called LD systems), which are sets equipped with a binary operation satisfying the left self-distributivity identity x(yz) = (xy)(xz). (LD) Such connections appeared in set theory in the 1980s and led to the discovery in 1991 of a left invariant linear order on the braid groups. Braids and self-distributivity have been studied for a long time. Braid groups were introduced in the 1930s by E. Artin, and they have played an increas ing role in mathematics in view of their connection with many fields, such as knot theory, algebraic combinatorics, quantum groups and the Yang-Baxter equation, etc. LD-systems have also been considered for several decades: early examples are mentioned in the beginning of the 20th century, and the first general results can be traced back to Belousov in the 1960s. The existence of a connection between braids and left self-distributivity has been observed and used in low dimensional topology for more than twenty years, in particular in work by Joyce, Brieskorn, Kauffman and their students. Brieskorn mentions that the connection is already implicit in (Hurwitz 1891). The results we shall concentrate on here rely on a new approach developed in the late 1980s and originating from set theory.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.