Braid Groups

· Graduate Texts in Mathematics Część 247 · Springer Science & Business Media
4,0
2 opinie
E-book
338
Strony
Oceny i opinie nie są weryfikowane. Więcej informacji

Informacje o e-booku

Braids and braid groups have been at the heart of mathematical development over the last two decades. Braids play an important role in diverse areas of mathematics and theoretical physics. The special beauty of the theory of braids stems from their attractive geometric nature and their close relations to other fundamental geometric objects, such as knots, links, mapping class groups of surfaces, and configuration spaces.

In this presentation the authors thoroughly examine various aspects of the theory of braids, starting from basic definitions and then moving to more recent results. The advanced topics cover the Burau and the Lawrence--Krammer--Bigelow representations of the braid groups, the Alexander--Conway and Jones link polynomials, connections with the representation theory of the Iwahori--Hecke algebras, and the Garside structure and orderability of the braid groups.

This book will serve graduate students, mathematicians, and theoretical physicists interested in low-dimensional topology and its connections with representation theory.

Oceny i opinie

4,0
2 opinie

O autorze

Dr. Christian Kassel is the director of CNRS (Centre National de la Recherche Scientifique in France), was the director of l'Institut de Recherche Mathematique Avancee from 2000 to 2004, and is an editor for the Journal of Pure and Applied Algebra. Kassel has numerous publications, including the book Quantum Groups in the Springer Gradate Texts in Mathematics series.

Dr. Vladimir Turaev was also a professor at the CNRS and is currently at Indiana University in the Department of Mathematics.

Oceń tego e-booka

Podziel się z nami swoją opinią.

Informacje o czytaniu

Smartfony i tablety
Zainstaluj aplikację Książki Google Play na AndroidaiPada/iPhone'a. Synchronizuje się ona automatycznie z kontem i pozwala na czytanie w dowolnym miejscu, w trybie online i offline.
Laptopy i komputery
Audiobooków kupionych w Google Play możesz słuchać w przeglądarce internetowej na komputerze.
Czytniki e-booków i inne urządzenia
Aby czytać na e-papierze, na czytnikach takich jak Kobo, musisz pobrać plik i przesłać go na swoje urządzenie. Aby przesłać pliki na obsługiwany czytnik, postępuj zgodnie ze szczegółowymi instrukcjami z Centrum pomocy.