Approximation Theory and Analytic Inequalities

· Springer Nature
Carte electronică
546
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

This contributed volume focuses on various important areas of mathematics in which approximation methods play an essential role. It features cutting-edge research on a wide spectrum of analytic inequalities with emphasis on differential and integral inequalities in the spirit of functional analysis, operator theory, nonlinear analysis, variational calculus, featuring a plethora of applications, making this work a valuable resource. The reader will be exposed to convexity theory, polynomial inequalities, extremal problems, prediction theory, fixed point theory for operators, PDEs, fractional integral inequalities, multidimensional numerical integration, Gauss–Jacobi and Hermite–Hadamard type inequalities, Hilbert-type inequalities, and Ulam’s stability of functional equations. Contributions have been written by eminent researchers, providing up-to-date information and several results which may be useful to a wide readership including graduate students and researchers working in mathematics, physics, economics, operational research, and their interconnections.

Despre autor

Themistocles M. Rassias is professor of mathematics at the National Technical University of Athens. His research interests include nonlinear analysis, global analysis, approximation theory, functional analysis, functional equations, inequalities and their applications. Professor Rassias received his PhD in mathematics from the University of California, Berkeley in 1976; his thesis advisor was Stephen Smale and his academic advisor was Shiing-Shen Chern. In addition to his extensive list of journal publications, Professor Rassias has published as author or volume editor several books published with Springer. Th. M. Rassias has received several awards and is an active editorial board member of an array of journals in mathematical analysis and optimization. His publications have received a large number of citations, with h-index 46.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.