Applied Mathematical Sciences: Perturbation Methods in Non-Linear Systems

· Applied Mathematical Sciences Numero 8 · Springer Science & Business Media
Ebook
369
pagine
Valutazioni e recensioni non sono verificate  Scopri di più

Informazioni su questo ebook

This volume is intended to provide a comprehensive treatment of recent developments in methods of perturbation for nonlinear systems of ordinary differ ential equations. In this respect, it appears to be a unique work. The main goal is to describe perturbation techniques, discuss their ad vantages and limitations and give some examples. The approach is founded on analytical and numerical methods of nonlinear mechanics. Attention has been given to the extension of methods to high orders of approximation, required now by the increased accuracy of measurements in all fields of science and technology. The main theorems relevant to each perturbation technique are outlined, but they only provide a foundation and are not the objective of these notes. Each chapter concludes with a detailed survey of the pertinent literature, supplemental information and more examples to complement the text, when necessary, for better comprehension. The references are intended to provide a guide for background information and for the reader who wishes to analyze any particular point in more detail. The main sources referenced are in the fields of differential equations, nonlinear oscillations and celestial mechanics. Thanks are due to Katherine MacDougall and Sandra Spinacci for their patience and competence in typing these notes. Partial support from the Mathematics Program of the Office of Naval Research is gratefully acknowledged.

Valuta questo ebook

Dicci cosa ne pensi.

Informazioni sulla lettura

Smartphone e tablet
Installa l'app Google Play Libri per Android e iPad/iPhone. L'app verrà sincronizzata automaticamente con il tuo account e potrai leggere libri online oppure offline ovunque tu sia.
Laptop e computer
Puoi ascoltare gli audiolibri acquistati su Google Play usando il browser web del tuo computer.
eReader e altri dispositivi
Per leggere su dispositivi e-ink come Kobo e eReader, dovrai scaricare un file e trasferirlo sul dispositivo. Segui le istruzioni dettagliate del Centro assistenza per trasferire i file sugli eReader supportati.