Applied Mathematical Sciences: Nonlinear Dispersive Equations

·
· Applied Mathematical Sciences Τεύχος 209 · Springer Nature
ebook
580
Σελίδες
Οι αξιολογήσεις και οι κριτικές δεν επαληθεύονται  Μάθετε περισσότερα

Σχετικά με το ebook

Nonlinear Dispersive Equations are partial differential equations that naturally arise in physical settings where dispersion dominates dissipation, notably hydrodynamics, nonlinear optics, plasma physics and Bose–Einstein condensates. The topic has traditionally been approached in different ways, from the perspective of modeling of physical phenomena, to that of the theory of partial differential equations, or as part of the theory of integrable systems.
This monograph offers a thorough introduction to the topic, uniting the modeling, PDE and integrable systems approaches for the first time in book form. The presentation focuses on three "universal" families of physically relevant equations endowed with a completely integrable member: the Benjamin–Ono, Davey–Stewartson, and Kadomtsev–Petviashvili equations. These asymptotic models are rigorously derived and qualitative properties such as soliton resolution are studied in detail in both integrable and non-integrable models. Numerical simulations are presented throughout to illustrate interesting phenomena.

By presenting and comparing results from different fields, the book aims to stimulate scientific interactions and attract new students and researchers to the topic. To facilitate this, the chapters can be read largely independently of each other and the prerequisites have been limited to introductory courses in PDE theory.

Σχετικά με τον συγγραφέα

Christian Klein is Professor of mathematical physics at the Université de Bourgogne in Dijon, France, and a senior member of the Institut Universitaire de France. He works on nonlinear dispersive PDEs, numerical approaches, integrable systems, applied algebraic geometry and general relativity. His main interest is the numerical study of zones of rapid oscillations in the solutions to nonlinear dispersive equations, so-called dispersive shock waves, and a loss of regularity, a so-called blow-up of the solutions.

Jean-Claude Saut is Emeritus Professor in the Laboratoire de Mathématiques of the Université Paris-Saclay. He works on the analysis of nonlinear dispersive equations and on their rigorous derivation as asymptotic models of general systems. His recent works concern a general class of Boussinesq systems, the analysis of weakly dispersive perturbations of the Burgers equation, and higher order models in the modulation regime of water waves.

Αξιολογήστε αυτό το ebook

Πείτε μας τη γνώμη σας.

Πληροφορίες ανάγνωσης

Smartphone και tablet
Εγκαταστήστε την εφαρμογή Βιβλία Google Play για Android και iPad/iPhone. Συγχρονίζεται αυτόματα με τον λογαριασμό σας και σας επιτρέπει να διαβάζετε στο διαδίκτυο ή εκτός σύνδεσης, όπου κι αν βρίσκεστε.
Φορητοί και επιτραπέζιοι υπολογιστές
Μπορείτε να ακούσετε ηχητικά βιβλία τα οποία αγοράσατε στο Google Play, χρησιμοποιώντας το πρόγραμμα περιήγησης στον ιστό του υπολογιστή σας.
eReader και άλλες συσκευές
Για να διαβάσετε περιεχόμενο σε συσκευές e-ink, όπως είναι οι συσκευές Kobo eReader, θα χρειαστεί να κατεβάσετε ένα αρχείο και να το μεταφέρετε στη συσκευή σας. Ακολουθήστε τις αναλυτικές οδηγίες του Κέντρου βοήθειας για να μεταφέρετε αρχεία σε υποστηριζόμενα eReader.

Συνεχίστε τη σειρά

Περισσότερα από τον χρήστη Christian Klein

Παρόμοια ebook