Algebraic Varieties

· Springer Science & Business Media
Carte electronică
196
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

Algebraic geometry has always been an ec1ectic science, with its roots in algebra, function-theory and topology. Apart from early resear ches, now about a century old, this beautiful branch of mathematics has for many years been investigated chiefly by the Italian school which, by its pioneer work, based on algebro-geometric methods, has succeeded in building up an imposing body of knowledge. Quite apart from its intrinsic interest, this possesses high heuristic value since it represents an essential step towards the modern achievements. A certain lack of rigour in the c1assical methods, especially with regard to the foundations, is largely justified by the creative impulse revealed in the first stages of our subject; the same phenomenon can be observed, to a greater or less extent, in the historical development of any other science, mathematical or non-mathematical. In any case, within the c1assical domain itself, the foundations were later explored and consolidated, principally by SEVERI, on lines which have frequently inspired further investigations in the abstract field. About twenty-five years ago B. L. VAN DER WAERDEN and, later, O. ZARISKI and A. WEIL, together with their schools, established the methods of modern abstract algebraic geometry which, rejecting the c1assical restriction to the complex groundfield, gave up geometrical intuition and undertook arithmetisation under the growing influence of abstract algebra.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.