The book provides a timely coverage of the paradigm of knowledge distillation—an efficient way of model compression. Knowledge distillation is positioned in a general setting of transfer learning, which effectively learns a lightweight student model from a large teacher model. The book covers a variety of training schemes, teacher–student architectures, and distillation algorithms. The book covers a wealth of topics including recent developments in vision and language learning, relational architectures, multi-task learning, and representative applications to image processing, computer vision, edge intelligence, and autonomous systems. The book is of relevance to a broad audience including researchers and practitioners active in the area of machine learning and pursuing fundamental and applied research in the area of advanced learning paradigms.
Galite klausyti garsinių knygų, įsigytų sistemoje „Google Play“ naudojant kompiuterio žiniatinklio naršyklę.
El. knygų skaitytuvai ir kiti įrenginiai
Jei norite skaityti el. skaitytuvuose, pvz., „Kobo eReader“, turite atsisiųsti failą ir perkelti jį į įrenginį. Kad perkeltumėte failus į palaikomus el. skaitytuvus, vadovaukitės išsamiomis pagalbos centro instrukcijomis.