Additive Combinatorics

·
· Cambridge Studies in Advanced Mathematics Livro 105 · Cambridge University Press
4,0
1 avaliação
E-book
18
Páginas
As notas e avaliações não são verificadas Saiba mais

Sobre este e-book

Additive combinatorics is the theory of counting additive structures in sets. This theory has seen exciting developments and dramatic changes in direction in recent years thanks to its connections with areas such as number theory, ergodic theory and graph theory. This graduate-level 2006 text will allow students and researchers easy entry into this fascinating field. Here, the authors bring together in a self-contained and systematic manner the many different tools and ideas that are used in the modern theory, presenting them in an accessible, coherent, and intuitively clear manner, and providing immediate applications to problems in additive combinatorics. The power of these tools is well demonstrated in the presentation of recent advances such as Szemerédi's theorem on arithmetic progressions, the Kakeya conjecture and Erdos distance problems, and the developing field of sum-product estimates. The text is supplemented by a large number of exercises and new results.

Classificações e resenhas

4,0
1 avaliação

Sobre o autor

Terence Tao is a Professor in the Department of Mathematics at the University of California, Los Angeles. He was awarded the Fields Medal in 2006 for his contributions to partial differential equations, combinatorics, harmonic analysis and additive number theory.

Van H. Vu is a Professor in the Department of Mathematics at Rutgers University, New Jersey.

Avaliar este e-book

Diga o que você achou

Informações de leitura

Smartphones e tablets
Instale o app Google Play Livros para Android e iPad/iPhone. Ele sincroniza automaticamente com sua conta e permite ler on-line ou off-line, o que você preferir.
Laptops e computadores
Você pode ouvir audiolivros comprados no Google Play usando o navegador da Web do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos de e-ink como os e-readers Kobo, é necessário fazer o download e transferir um arquivo para o aparelho. Siga as instruções detalhadas da Central de Ajuda se quiser transferir arquivos para os e-readers compatíveis.