Absolute Analysis

·
· Grundlehren der mathematischen Wissenschaften Cartea 102 · Springer Science & Business Media
Carte electronică
272
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

The first edition of this book, published in German, came into being as the result of lectures which the authors held over a period of several years since 1953 at the Universities of Helsinki and Zurich. The Introduction, which follows, provides information on what moti vated our presentation of an absolute, coordinate- and dimension-free infinitesimal calculus. Little previous knowledge is presumed of the reader. It can be recom mended to students familiar with the usual structure, based on co ordinates, of the elements of analytic geometry, differential and integral calculus and of the theory of differential equations. We are indebted to H. Keller, T. Klemola, T. Nieminen, Ph. Tondeur and K. 1. Virtanen, who read our presentation in our first manuscript, for important critical remarks. The present new English edition deviates at several points from the first edition (d. Introduction). Professor I. S. Louhivaara has from the beginning to the end taken part in the production of the new edition and has advanced our work by suggestions on both content and form. For his important support we wish to express our hearty thanks. We are indebted also to W. Greub and to H. Haahti for various valuable remarks. Our manuscript for this new edition has been translated into English by Doctor P. Emig. We express to him our gratitude for his careful interest and skillful attention during this work.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.