A Study of Braids

¡
¡ Mathematics and Its Applications āĻ•āĻŋāĻ¤āĻžāĻĒ 484 ¡ Springer Science & Business Media
āĻ‡āĻŦā§āĻ•
277
āĻĒā§ƒāĻˇā§āĻ āĻž
āĻŽā§‚āĻ˛ā§āĻ¯āĻžāĻ‚āĻ•āĻ¨ āĻ†ā§°ā§ āĻĒā§°ā§āĻ¯āĻžāĻ˛ā§‹āĻšāĻ¨āĻž āĻ¸āĻ¤ā§āĻ¯āĻžāĻĒāĻ¨ āĻ•ā§°āĻž āĻšā§‹ā§ąāĻž āĻ¨āĻžāĻ‡  āĻ…āĻ§āĻŋāĻ• āĻœāĻžāĻ¨āĻ•

āĻāĻ‡ āĻ‡āĻŦā§āĻ•āĻ–āĻ¨ā§° āĻŦāĻŋāĻˇā§Ÿā§‡

In Chapter 6, we describe the concept of braid equivalence from the topological point of view. This will lead us to a new concept braid homotopy that is discussed fully in the next chapter. As just mentioned, in Chapter 7, we shall discuss the difference between braid equivalence and braid homotopy. Also in this chapter, we define a homotopy braid invariant that turns out to be the so-called Milnor number. Chapter 8 is a quick review of knot theory, including Alexander's theorem. While, Chapters 9 is devoted to Markov's theorem, which allows the application of this theory to other fields. This was one of the motivations Artin had in mind when he began studying braid theory. In Chapter 10, we discuss the primary applications of braid theory to knot theory, including the introduction of the most important invariants of knot theory, the Alexander polynomial and the Jones polynomial. In Chapter 11, motivated by Dirac's string problem, the ordinary braid group is generalized to the braid groups of various surfaces. We discuss these groups from an intuitive and diagrammatic point of view. In the last short chapter 12, we present without proof one theorem, due to Gorin and Lin [GoL] , that is a surprising application of braid theory to the theory of algebraic equations.

āĻāĻ‡ āĻ‡āĻŦā§āĻ•āĻ–āĻ¨āĻ• āĻŽā§‚āĻ˛ā§āĻ¯āĻžāĻ‚āĻ•āĻ¨ āĻ•ā§°āĻ•

āĻ†āĻŽāĻžāĻ• āĻ†āĻĒā§‹āĻ¨āĻžā§° āĻŽāĻ¤āĻžāĻŽāĻ¤ āĻœāĻ¨āĻžāĻ“āĻ•āĨ¤

āĻĒāĻĸāĻŧāĻžā§° āĻ¨āĻŋāĻ°ā§āĻĻā§‡āĻļāĻžā§ąāĻ˛ā§€

āĻ¸ā§āĻŽāĻžā§°ā§āĻŸāĻĢ’āĻ¨ āĻ†ā§°ā§ āĻŸā§‡āĻŦāĻ˛ā§‡āĻŸ
Android āĻ†ā§°ā§ iPad/iPhoneā§° āĻŦāĻžāĻŦā§‡ Google Play Books āĻāĻĒāĻŸā§‹ āĻ‡āĻ¨āĻˇā§āĻŸāĻ˛ āĻ•ā§°āĻ•āĨ¤ āĻ‡ āĻ¸ā§āĻŦāĻ¯āĻŧāĻ‚āĻ•ā§āĻ°āĻŋāĻ¯āĻŧāĻ­āĻžā§ąā§‡ āĻ†āĻĒā§‹āĻ¨āĻžā§° āĻāĻ•āĻžāĻ‰āĻŖā§āĻŸā§° āĻ¸ā§ˆāĻ¤ā§‡ āĻ›āĻŋāĻ‚āĻ• āĻšāĻ¯āĻŧ āĻ†ā§°ā§ āĻ†āĻĒā§āĻ¨āĻŋ āĻ¯'āĻ¤ā§‡ āĻ¨āĻžāĻĨāĻžāĻ•āĻ• āĻ¤'āĻ¤ā§‡āĻ‡ āĻ•ā§‹āĻ¨ā§‹ āĻ…āĻĄāĻŋāĻ…'āĻŦā§āĻ• āĻ…āĻ¨āĻ˛āĻžāĻ‡āĻ¨ āĻŦāĻž āĻ…āĻĢāĻ˛āĻžāĻ‡āĻ¨āĻ¤ āĻļā§āĻ¨āĻŋāĻŦāĻ˛ā§ˆ āĻ¸ā§āĻŦāĻŋāĻ§āĻž āĻĻāĻŋāĻ¯āĻŧā§‡āĨ¤
āĻ˛ā§‡āĻĒāĻŸāĻĒ āĻ†ā§°ā§ āĻ•āĻŽā§āĻĒāĻŋāĻ‰āĻŸāĻžā§°
āĻ†āĻĒā§āĻ¨āĻŋ āĻ•āĻŽā§āĻĒāĻŋāĻ‰āĻŸāĻžā§°ā§° ā§ąā§‡āĻŦ āĻŦā§āĻ°āĻžāĻ‰āĻœāĻžā§° āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āĻ•ā§°āĻŋ Google PlayāĻ¤ āĻ•āĻŋāĻ¨āĻž āĻ…āĻĄāĻŋāĻ…'āĻŦā§āĻ•āĻ¸āĻŽā§‚āĻš āĻļā§āĻ¨āĻŋāĻŦ āĻĒāĻžā§°ā§‡āĨ¤
āĻ‡-ā§°ā§€āĻĄāĻžā§° āĻ†ā§°ā§ āĻ…āĻ¨ā§āĻ¯ āĻĄāĻŋāĻ­āĻžāĻ‡āĻš
Kobo eReadersā§° āĻĻā§°ā§‡ āĻ‡-āĻšāĻŋā§ŸāĻžāĻāĻšā§€ā§° āĻĄāĻŋāĻ­āĻžāĻ‡āĻšāĻ¸āĻŽā§‚āĻšāĻ¤ āĻĒā§āĻŋāĻŦāĻ˛ā§ˆ, āĻ†āĻĒā§āĻ¨āĻŋ āĻāĻŸāĻž āĻĢāĻžāĻ‡āĻ˛ āĻĄāĻžāĻ‰āĻ¨āĻ˛â€™āĻĄ āĻ•ā§°āĻŋ āĻ¸ā§‡āĻ‡āĻŸā§‹ āĻ†āĻĒā§‹āĻ¨āĻžā§° āĻĄāĻŋāĻ­āĻžāĻ‡āĻšāĻ˛ā§ˆ āĻ¸ā§āĻĨāĻžāĻ¨āĻžāĻ¨ā§āĻ¤ā§°āĻŖ āĻ•ā§°āĻŋāĻŦ āĻ˛āĻžāĻ—āĻŋāĻŦāĨ¤ āĻ¸āĻŽā§°ā§āĻĨāĻŋāĻ¤ āĻ‡-ā§°āĻŋāĻĄāĻžā§°āĻ˛ā§ˆ āĻĢāĻžāĻ‡āĻ˛āĻŸā§‹ āĻ•ā§‡āĻ¨ā§‡āĻ•ā§ˆ āĻ¸ā§āĻĨāĻžāĻ¨āĻžāĻ¨ā§āĻ¤ā§° āĻ•ā§°āĻŋāĻŦ āĻœāĻžāĻ¨āĻŋāĻŦāĻ˛ā§ˆ āĻ¸āĻšāĻžāĻ¯āĻŧ āĻ•ā§‡āĻ¨ā§āĻĻā§ā§°āĻ¤ āĻĨāĻ•āĻž āĻ¸āĻŦāĻŋāĻļā§‡āĻˇ āĻ¨āĻŋā§°ā§āĻĻā§‡āĻļāĻžā§ąāĻ˛ā§€ āĻšāĻžāĻ“āĻ•āĨ¤

āĻ›āĻŋā§°āĻŋāĻœāĻŸā§‹ āĻ…āĻŦā§āĻ¯āĻžāĻšāĻ¤ ā§°āĻžāĻ–āĻ•

Kunio Murasugiā§° āĻĻā§āĻŦāĻžā§°āĻž āĻ†ā§°ā§ āĻ…āĻ§āĻŋāĻ•

āĻāĻ•ā§‡āĻ§ā§°āĻŖā§° āĻ‡-āĻŦā§āĻ•