Optimizing Large Language Models Practical Approaches and Applications of Quantization Technique

Anand Vemula · በAI-Madison (ከGoogle) የተተረከ
ተሰሚ መጽሐፍ
1 ሰዓ 51 ደቂቃ
ያላጠረ
በAI-የተተረከ
የተሰጡት ደረጃዎች እና ግምገማዎች የተረጋገጡ አይደሉም  የበለጠ ለመረዳት
11 ደቂቃ ናሙና ይፈልጋሉ? በማንኛውም ጊዜ ያዳምጡ፣ ከመስመር ውጭም እንኳ 
አክል

ስለዚህ ኦዲዮ መጽሐፍ

 The book provides an in-depth understanding of quantization techniques and their impact on model efficiency, performance, and deployment.

The book starts with a foundational overview of quantization, explaining its significance in reducing the computational and memory requirements of LLMs. It delves into various quantization methods, including uniform and non-uniform quantization, per-layer and per-channel quantization, and hybrid approaches. Each technique is examined for its applicability and trade-offs, helping readers select the best method for their specific needs.

The guide further explores advanced topics such as quantization for edge devices and multi-lingual models. It contrasts dynamic and static quantization strategies and discusses emerging trends in the field. Practical examples, use cases, and case studies are provided to illustrate how these techniques are applied in real-world scenarios, including the quantization of popular models like GPT and BERT.

ስለደራሲው

AI Evangelist with 27 years of IT experience

ለዚህ ኦዲዮ መጽሐፍ ደረጃ ይስጡ

ምን እንደሚያስቡ ይንገሩን።

የማዳመጥ መረጃ

ዘመናዊ ስልኮች እና ጡባዊዎች
የGoogle Play መጽሐፍት መተግበሪያውንAndroid እና iPad/iPhone ያውርዱ። ከእርስዎ መለያ ጋር በራስሰር ይመሳሰላል እና ባሉበት የትም ቦታ በመስመር ላይ እና ከመስመር ውጭ እንዲያነቡ ያስችልዎታል።
ላፕቶፖች እና ኮምፒውተሮች
የኮምፒውተርዎ የድር አሳሽ ተጠቅመው Google Play ላይ የገዟቸውን መጽሐፍት ማንበብ ይችላሉ።

ተጨማሪ በAnand Vemula

ተመሳሳይ ተሳሚ መጽሐፍት

በMadison የተተረከ